

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/ecs-experimental/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/ecs-experimental/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

ECS 2.x Software Container Deployment

Note See the changelog.md file for release notes.

There are two deployment options available:

	ECS Docker Multiple Node Deployment (recommended) [https://github.com/EMCECS/ECS-CommunityEdition/tree/master/ecs-multi-node]

	ECS Docker Single Node Deployment [https://github.com/EMCECS/ECS-CommunityEdition/tree/master/ecs-single-node]

Description

EMC Elastic Cloud Storage (ECS) is a stateful containerized cloud storage. It provides persistence for your applications that can access data through standardized Object protocols like AWS S3 or OpenStack Swift. ECS can be set up on one or more hosts / VMs in a single-site or a multi-site geo replicated configuration. We want the wider community to use ECS and provide feedback. Usage of this software is under the following End User License Agreement.

License Agreement

EMC Elastic Cloud Storage (ECS) Software Limited-Use License Agreement

This EMC Software License Agreement (the “Agreement”) is a legal agreement between EMC Corporation, with a principal office at 176 South Street, Hopkinton, MA 01748 USA (“EMC”) and you and the organization on whose behalf you are accessing this Agreement (the “Customer”) and governs Customer’s access to, downloading of, and use of any and all components, associated media, printed materials, documentation, and programming accessed via the EMC software (the “Software”).

By clicking on the “Agree” or check box or similar button set forth below, or by downloading, installing, or using the Software, you are representing to EMC that (i) you are authorized to legally bind the Customer, and (ii) you are agreeing on behalf of the Customer that the terms of this Agreement shall govern the relationship of the parties with regard to the Software.

If you do not have authority to agree to the terms of this Agreement, or do not accept the terms of this Agreement, click on the “Cancel” or similar button or discontinue your efforts to download the Software, and the registration, download and/or installation process will not continue. In such event, no access to, or authorization to download or use the Software, is granted by EMC.

EMC and Customer enter into this Agreement and this Agreement shall become effective on the date on which Customer clicks on the “Agree” button described above or downloads, installs or uses the Software, whichever occurs first (the “Effective Date”). NOW, THEREFORE, in consideration of the premises and obligations contained herein, it is agreed as follows:

1.0 - DEFINITIONS

1.1 - “Equipment” means the Customer owned storage devices, systems, or central processing units that the Software was designed to run on or with.

1.2 - “Software” means the free EMC Software made available for download by Customer from a designated EMC web site.

2.0 - PURPOSE AND SCOPE

2.1 - The Software shall be used for Customer’s internal business purposes and in accordance with EMC’s instructions and documentation. The Software is available from EMC to Customer at no charge, but only after Customer agrees to the license terms as contained in this Agreement.

2.2 - Under this Agreement, Customer may use the Software on the related Equipment it owns.

3.0 LICENSE TERMS

3.1 - EMC grants Customer a license to use the Software on the Equipment commencing on download for as long as Customer complies with this Agreement. The foregoing licenses shall be non-exclusive, non-transferable, and non-sublicensable and subject to the restriction that the Software be used solely on or in connection with the Equipment for which it was licensed. EMC may terminate licenses, without liability, if Customer breaches this Agreement and fails to cure within thirty (30) days after receipt of EMC’s written notice thereof. Upon termination, Customer shall cease all use and return or certify destruction of Software (including copies) to EMC. Customer shall not, without EMC’s prior written consent, use the Software in a production environment, service bureau capacity, or copy, provide, disclose or otherwise make available Software in any form to anyone other than Customer’s agents, employees, consultants or independent contractors (“Personnel”), who shall use Software solely for Customer’s internal business purposes in a manner consistent with this Agreement. Customer shall be fully responsible to EMC for the compliance of Customer’s personnel herewith.

3.2 - Software is licensed only. No title to, or ownership of, the Software is transferred to Customer. Customer shall reproduce and include copyright and other proprietary notices on and in any copies, including but not limited to partial, physical or electronic copies, of the Software. Neither Customer nor its personnel shall modify, enhance, supplement, create derivative works from, reverse assemble, reverse engineer, reverse compile or otherwise reduce to human readable form the Software without EMC’s prior written consent. Any third party software that may be provided by EMC shall be governed by the third party’s separate license terms, if any.

4.0 - DELIVERY AND INSTALLATION

4.1 - Delivery of the Software is by download only.

4.2 - EMC shall, as necessary, provide Customer with information to download, install and use the Software.

5.0 - TERM AND TERMINATION

5.1 - If Customer fails to perform any of its material covenants, obligations or responsibilities under this Agreement, Customer shall be in default and breach of this Agreement, and EMC shall, in addition to any other remedies, which may be available to EMC under this Agreement, in law or equity, in its sole discretion, have the right to terminate this Agreement and any or all related license(s) granted to Customer by written notice thereto, with such termination to be effective immediately.

5.2 - EMC may terminate this Agreement for its convenience at any time by providing Customer with a minimum of thirty (30) days prior notice.

6.0 - NO WARRANTY OR SUPPORT

6.1 - EMC PROVIDES ALL SOFTWARE HEREUNDER ON AN “AS-IS,” “WHERE IS” BASIS, AND MAKES NO OTHER EXPRESS WARRANTIES, WRITTEN OR ORAL, AND ALL OTHER WARRANTIES ARE SPECIFICALLY EXCLUDED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, AND ANY WARRANTY ARISING BY STATUTE, OPERATION OF LAW, COURSE OF DEALING OR PERFORMANCE, OR USAGE OF TRADE.

6.2 - EMC shall not provide any technical support, SLA’s, telephone support, on-line support, or support of any kind under this Agreement. Customer is not entitled to receive any updates, upgrades or enhancements of any kind under this Agreement. This includes, but is not limited to, security vulnerabilities that may be applicable to the Software.

6.3 - No representation or other affirmation of fact, including but not limited to statement regarding capacity, suitability for use or performance of Software, whether made by EMC employees or otherwise, shall be deemed to be a warranty for any purpose or give rise to any liability of EMC whatsoever unless contained in this Agreement.

7.0 NO INDEMNIFICATION

7.1 - EMC shall have no liability to Customer for any action (and all prior related claims) brought by or against Customer alleging that Customer’s use or other disposition of any Software infringes any patent, copyright, trade secret or other intellectual property right. In event of such an action, EMC retains the right to terminate this Agreement and take possession of the Software.

7.2 - THIS SECTION 7.0 STATES EMC’S ENTIRE LIABILITY WITH RESPECT TO ALLEGED INFRINGEMENTS OF INTELLECTUAL PROPERTY RIGHTS BY THE SOFTWARE OR ANY PART OF THEM OR BY ITS OPERATION.

8.0 LIMITATION OF LIABILITY

8.1 - EMC’S AND ITS SUPPLIER’S TOTAL LIABILITY AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY FOR A CLAIM OF DAMAGE TO REAL OR TANGIBLE PERSONAL PROPERTY OR ANY OTHER CLAIM WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS BASED ON CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY IN TORT, THAT ARISES OUT OF OR IN CONNECTION WITH SOFTWARE OR SERVICES PROVIDED HEREUNDER, SHALL BE LIMITED TO PROVEN DIRECT DAMAGES CAUSED BY EMC’S SOLE NEGLIGENCE IN AN AMOUNT NOT TO EXCEED US$5,000. IN NO EVENT SHALL EMC OR ITS SUPPLIERS BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL, INDIRECT, OR SPECIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS, REVENUES, DATA AND/OR USE) EVEN IF ADVISED OF THE POSSIBILITY THEREOF. NEITHER PARTY SHALL BRING ANY CLAIM ARISING OUT OF THE SOFTWARE OR SERVICES PROVIDED HEREUNDER MORE THAN EIGHTEEN (18) MONTHS AFTER SUCH CLAIM HAS ACCRUED.

8.2 - IF CUSTOMER USES SOFTWARE FOR ANY PURPOSE EXCEPT AS STATED HEREIN OR OTHERWISE AGREED IN WRITING, EMC SHALL HAVE NO LIABILITY WHATSOEVER FOR ANY DAMAGE TO EQUIPMENT OR DATA, OR FINANCIAL LOSSES, RESULTING FROM SUCH USE.

9.0 GENERAL

9.1 - Assignment – Customer shall not assign any right or interest hereunder nor delegate any work or other obligation to be performed hereunder to any entity other than its corporate parent, or a division or wholly or majority owned subsidiary of the party or its corporate parent. Any such action in violation of the foregoing shall be void.

9.2 - Entire Agreement - The terms contained herein constitute the entire agreement between the parties with respect to the subject matter hereof and shall supersede all prior communications and agreements, either oral, written or otherwise recorded.

9.3 - Compliance with Export Control Laws – Customer shall comply with all applicable export laws, orders and regulations and obtain all necessary governmental permits, licenses and clearances.

9.4 - Governing Law - This Agreement shall be governed by the laws of the Commonwealth of Massachusetts, excluding its conflict of law rules. The U. N. Convention on Contracts for the International Sale of Goods shall not apply.

9.5 - Notices – Except for routine communications, all other notices required or permitted hereunder, including but not limited to notices of default or breach, shall be signed by an authorized representative of the sender. Such notices shall be deemed to have been received (i) when hand delivered to such individuals by a representative of the sender; (ii) three (3) days after having been sent postage prepaid, by registered or certified first class mail, return receipt requested; (iii) when sent by electronic transmission, with written confirmation by the method of transmission; or (iv) one (1) day after deposit with an overnight carrier, with written verification of delivery.

9.6 - No Waiver – No omission or delay by either party in requiring the other party to fulfill its obligations hereunder shall be deemed to constitute a waiver of (i) the right to require the fulfillment of any other obligation hereunder; or (ii) any remedy that may be available hereunder.

9.7 - Independent Contractors - The parties shall act as independent contractors for all purposes under this Agreement. Nothing contained herein shall be deemed to constitute either party as an agent or representative of the other party, or both parties as joint venturers or partners for any purpose. Neither party shall be responsible for the acts or omissions of the other party, and neither party will have authority to speak for, represent or obligate the other party in any way without an authenticated record indicating the prior approval of the other party.

9.8 - Separability - If any provision of this Agreement shall be held illegal or unenforceable, such provision shall be deemed separable from, and shall in no way affect or impair the validity or enforceability of, the remaining provisions.

Support

Please file bugs and issues at the ECS’s site in the EMC Community Network (ECS’s support site) [https://community.emc.com/community/products/ecs] and you can also use this GitHub’s repository issues page. For more general discussions you can contact the EMC Code team at Google Groups or tagged with EMC on Stack Overflow. The code and documentation are released with no warranties or SLAs and are intended to be supported through a community driven process.

Directory Structure

Directory Name	Description
————–	———–
ecs-single-node	Contains the scripts to run a Elastic Cloud Storage single Node Docker and Vagrant deployments
ecs-multi-node	Contains the scripts to run a Elastic Cloud Storage Multiple Node Docker deployment
Documentation	Contains documentation files and media

Update 2015-01-19: v2.2.0.0

	Updated Docker Image to ECS Software v2.2 [https://support.emc.com/docu62941_ECS_2.2_Release_Notes.pdf?language=en_US&language=en_US]

	Note: Due to export restrictions, ECS Community Edition does not include encryption functionality.

	Updated install scripts to work with ECS 2.2. Note: if you want to install ECS 2.1, please download the install scripts for 2.1 from github. The changes to install 2.2 are not backward-compatible.

Update 2015-12-29: v.2.1.0.2

	Updated Docker Image to ECS Software v2.1 Hotfix 2 [https://support.emc.com/docu62377_ECS_2.1_HF2_Readme.txt?language=en_US&language=en_US]

	Various improvements to retry code

	Changes to and fixes for VDC creation, esp. in multi-VDC builds

	VDC Provisioning may now be deliberately omitted with -SkipVDCProvision

	Modification of storage server (SSM) parameters to better support smaller disk configurations

	Pre-existing docker images no longer removed during installation

	Addition of systemd script for container start/stop

	Fixes for import, formatting, and other assorted minor bugs

Update 2015-11-30

	Updated Docker Image to a ECS Software v2.1 Hotfix 1 [https://support.emc.com/docu62132_ECS_2.1_HF1_Readme.txt?language=en_US&language=en_US]

	Users can now optionally specify docker image via command-line arguments in step1.

	Installation script provides more inforamation to user, proceeds depending on services’ availability.

	Fix for authentication issues resulting from default provisioning.

ECS SW 2.x Single Node Deployments

Welcome to the Single Node installation for ECS Software 2.x. We have provided the following deployment options:

	ECS Single Node Docker Deployment [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-SingleNode-Instructions.md]

	ECS Single Node Vagrant Deployment [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-SingleNode-Vagrant-Instructions.md]

	Google Compute Engine Single Node Deployment [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-GCE-SingleNode-Instructions.md]

Requirements

The most machine should have these following minimum requirements:

	Operative system: CentOS 7.1

	CPU/Cores: 4 Cores

	Memory: Minimum of 16 GB RAM

	Disks: An unpartitioned/raw disk with at least 100 GB of storage per disk per host. Multiple disks can be attached on each node to increase capacity and performance. Each disk needs to be de-partitioned before running the installation scripts (you can use the –cleanup option with the step1 script to accomplish this automatically).

Installation also requires internet connectivity to recieve the requisite utility packages and Docker images.

 For systems running systemd, you can start and stop the ECS container with the system using this script. To install, run:

sudo cp docker.ecsstandalone.service /etc/systemd/system/
sudo systemctl enable docker.ecsstandalone.service

Then your docker container will restart with the system. Also be sure that docker itself is set to restart with the system:

sudo systemctl enable docker.service

ECS SW 2.x Multiple Nodes Deployments

Welcome to the Multiple Nodes installation for ECS Software 2.x. We have provided the following deployment options:

	ECS Multiple Nodes Docker Deployment [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-MultiNode-Instructions.md]

	ECS Docker Multi Node Deployment using Docker Machine, Docker Swarm, & Docker Compose [https://github.com/emccode/ecs-dockerswarm/]

	ECS Multiple Nodes Puppet Deployment [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-MultiNode-Puppet-Instructions.md]

	Google Compute Engine Multi Node Deployment [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-GCE-MultiNode-Instructions.md]

Requirements

The host sachines should have these following minimum requirements:

	Operative system: CentOS 7

	CPU/Cores: 4 Cores

	Memory: Minimum of 16 GB RAM

	Disks: An unpartitioned/raw disk with at least 100 GB of storage per disk per host. Multiple disks can be attached on each node to increase capacity and performance. Each disk needs to be de-partitioned before running the installation scripts (you can use the –cleanup option with the step1 script to accomplish this automatically).

For multi-node deployments, the minimum number of nodes is 3. However, installing 4 nodes is recommended if you want redundancy against node failure and erasure coding to work (EC will be disabled if less than 4 nodes are available).

Installation also requires internet connectivity to recieve the requisite utility packages and Docker images.

 For systems running systemd, you can start and stop the ECS container with the system using this script. To install, run:

sudo cp docker.ecsmultinode.service /etc/systemd/system/
sudo systemctl enable docker.ecsmultinode.service

Then your docker container will restart with the system. Also be sure that docker itself is set to restart with the system:

sudo systemctl enable docker.service

 This directory contains the CA certificate for the internal EMC SSL proxy. If you’re installing ECS Community edition on a system behind the EMC firewall, you will need to install this certificate in your list of trusted CAs. To do this on CentOS, do the following:

cp emc_ssl.pem /etc/pki/ca-trust/source/anchors/
update-ca-trust extract

Do this on each host and restart the docker process:

systemctl restart docker

ECS Software 2.x - Troubleshooting Tips

Troubleshooting Tips

This is a list of troubleshooting tips and nuggets that will help with issues. If you still have problems, please use the support section.

Provisioning of ECS

It takes roughly 30 minutes to get the system provisioned for Step 2 (step2_object_provisioning.py). ECS creates Storage Pools, Replication Groups with the attached disks. If Step 2 is successful, you should see something along these lines.

Adding a Secret Key for a user

Set the user and the key that needs to be used and execute the command. For example:

User: emccode
SecretKey: UORQB9Xxx8OKmjplSgKHRIPeeWcR2bbiagC5/xT+Add secret

Executing REST API command:

curl -s -k -X GET -H 'Content-Type:application/json' -H 'X-SDS-AUTH-TOKEN: BAAca1B6WUJ2Q2hFeUZWSkczNXFIT0I0LzA1SHg4PQMAQQIADTE0MzQ4Njk5Mjc0NzIDAC51cm46VG9rZW46ZWVlNGEwMDEtYzkyOC00ZTIyLTlkMzQtYmE0NWU2N2E4MmM4AgAC0A8=' -H 'ACCEPT:application/json' https://23.99.93.171:9011/object/user-secret-keys/emccode {"secret_key_1":"UORQB9Xxx8OKmjplSgKHRIPeeWcR2bbiagC5/xT+","key_timestamp_1":"2015-06-21 07:31:48.515","key_expiry_timestamp_1":"","secret_key_2":"","key_timestamp_2":"","key_expiry_timestamp_2":"","link":{"rel":"self","href":"/object/secret-keys"}}

Checking Step 2 Object provisioning progress

If you want to see if system is making progress:

	Log into one of ECS data nodes.

	Navigate to the /var/log/vipr/emcvipr-object/ directory

	View the /var/log/vipr/emc-viprobject/ssm.log (tail -f /var/log/vipr/emcvipr-object/ssm.log
)

Note: there are ~2k tables to be initialized for the provisioning to complete. You can check the following command to see if the tables are close to that number and if all tables are ready. Run this from the node.

curl -X GET "http://<YourIPAddress>:9101/stats/dt/DTInitStat”

Docker Container immediately exits on startup

If your docker instance immediately exits when started, please ensure that the entries in /etc/hosts on the host system and network.json in the install directory are correct (the latter should reflect the host’s public IP and the corresponding network adapter).

For those operating behind EMC firewall

To install ECS Community Edition under these conditions, please view the readme file under /emc-ssl-cert for further instructions in installing the necessary CA certificate.

Restoring ECS after host shutdown/restart

In the case that the ECS Community Edition container does not automatically start on boot, you can bring it up manually by ensuring that docker is running (service docker start) and issuing a start command for the container (docker start <container-id>, where the container-ID is ecsstandalone or ecsmultinode, viewable via the command sudo docker ps -a).

Ensure that the Docker container restores itself on boot by executing the following:
systemctl enable docker.service
echo "docker start <container-id>" >>/etc/rc.local

ECS web portal will not start

The portal service will listen on ports 443 and 4443; check to make sure no other services (such as virtual hosts or additional instances of ECSCE) are not attempting to utilize these same ports.

For multiple-node installations, the /etc/hosts file on the host VM should include entries for each node and their hostname. Additionally, many services including the ECS web portal will not start until all nodes specified to the installation step 1 script have been successfully installed and concurrently running; the installation script should be run on all nodes in a cluster before attempting authentication or use of the GUI.

If attempting to authenticate results in a response of “Connection Refused”, review the below section and ensure all necessary ports are open on all ECS nodes in the cluster.

List of open ports required on each ECS data node

Ensure the ports in the following table are open for communication. In the case of a multiple-node installation, additionally ensure that each node is trusted to itself and to other nodes in the system by using the following command on each node:

firewall-cmd --permanent --zone=trusted --add-source=<ECS-node-IP>/32

followed by firewall-cmd --reload for each host.

fwd_settings.sh in the main directory will invoke the firewalld service and permanently open necessary ports. In the case of a failure in this setup referencing iptables, please ensure that your docker network bridge is running and installed using yum install bridge-utils.

In the case of a multiple node configuration, you may

|Port Name-Usage=Port Number|
|—————————|
|port.ssh=22|
|port.ecsportal=80|
|port.rcpbind=111|
|port.activedir=389|
|port.ecsportalsvc=443|
|port.activedirssl=636|
|port.ssm=1095|
|port.rm=1096|
|port.blob=1098|
|port.provision=1198|
|port.objhead=1298|
|port.nfs=2049|
|port.zookeeper=2181|
|port.coordinator=2889|
|port.cassvc=3218|
|port.ecsmgmtapi=4443|
|port.rmmvdcr=5120|
|port.rmm=5123|
|port.coordinator=7399|
|port.coordinatorsvc=7400|
|port.rmmcmd=7578|
|port.objcontrolUnsecure=9010|
|port.objcontrolSecure=9011|
|port.s3MinUnsecure=9020|
|port.s3MinSecure=9021|
|port.atmosMinUnsecure=9022|
|port.atmosMinSecure=9023|
|port.swiftMinUnsecure=9024|
|port.swiftMinSecure=9025|
|port.apiServerMinUnsecure=9028|
|port.apiServerMinSecure=9029|
|port.hdfssvc=9040|
|port.netserver=9069|
|port.cm=9091|
|port.geoCmdMinUnsecure=9094|
|port.geoCmdMinSecure=9095|
|port.geoDataMinUnsecure=9096|
|port.geoDataMinSecure=9097|
|port.geo=9098|
|port.ss=9099|
|port.dtquery=9100|
|port.dtqueryrecv=9101|
|port.georeplayer=9111|
|port.stat=9201|
|port.statWebServer=9202|
|port.vnest=9203|
|port.vnesthb=9204|
|port.vnestMinUnsecure=9205|
|port.vnestMinSecure=9206|
|port.hdfs=9208|
|port.event=9209|
|port.objcontrolsvc=9212|
|port.zkutils=9230|
|port.cas=9250|
|port.resource=9888|
|port.tcpIpcServer=9898|

ECS Software 2.x - Multi-Node Puppet Configuration Instructions

Table of Contents

	Introduction

	Global Requirements

	Installation Steps

	CentOS Installation
	Pre-Installation Steps

	Host Configuration

	Host and Container Configuration

	ECS Object Configuration

	ECS Web Environment access and object testing

	Troubleshooting

	Support

Introduction

EMC’s Elastic Cloud Storage (ECS) 2.x Software Puppet Multiple node deployment is intended to be used by developers and Ops Who are familiar with Puppet Enterprise as configuration management system.

Global Requirements

An ECS cluster deployment requires a minimum of three (3) data nodes to provide the feature set required. Each one of the instances should have the following minimum requirements:

	Operative system: CentOS 7

	CPU/Cores: 4 Cores

	Memory: Minimum of 50 GB RAM (64 GB recommended)

	Disks: An unpartitioned/Raw disk with at least 100 GB of Storage per disk per host. Multiple disks can be attached on each ECS Node to increase capacity and performance. Each disk need to be un-partitioned before running the installation scripts.

Supported Host Operative Systems

We have performed testing against the following platforms:

OS Name | Version | Docker Version |
|——-|———|—————-|
|CentOS | 7.1 | 1.4.1 |

Puppet ECS Module

The installation Module is composed by two main manifest files:

Step	Name	Description
——	——	———–
1	ini.pp	Initial class
2	Configurate.pp	Install and configure the node to run ECS Software

CentOS Installation

CentOS [http://www.centos.org/] is a well known Linux distribution that has the ability to deploy containers with Docker. Common public cloud platforms have CentOS templates ready to be used.

Pre Installation Requirement

These steps are to be performed prior install The module on the Puppet master server:

	Puppet Master: The master server is installed and configured.

	Puppet Nodes: Puppet node is installed and configured with the correct ports. ECS requires the following ports open:

Port Number	Port Description
———–	—————-
22	SSH, needed if using remote access
443	Port used for accessing the ECS Web Application
4443	Port used for accessing the ECS API. This port can be closed from external access after the installation
9011	Port used for accessing the ECS API. This port can be closed from external access after the installation
9020	Port used for the S3 API
9024	Port used for SWIFT API
61613	Puppet MCollective
8140	Puppet

Note: There are more ports required to be open if you have a firewall running on the hosts. Please refer to List of Ports to be Open [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md#list-of-open-ports-required-on-each-ecs-data-node] of the troubleshooting page.

In addition, please refer to the ECS Security Configuration Guide [https://community.emc.com/docs/DOC-45012] and our the troubleshooting page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md] if you find any issues.

	The following Puppet Get Start Guide [http://info.puppetlabs.com/pe-azure-gsg.html] is good reference to use.

Install ECS Module

Puppet Master Server:

	From the command line on the Puppet master, navigate to the modules directory cd /etc/puppetlabs/puppet/environments/production/modules.

	Run mkdir -p ecs3datanodes/manifests to create the new module directory and its manifests directory.

	Run cd ecs3datanodes/manifests

	Using wget download ecs manifest ini.pp wget -q https://github.com/EMCECS/ECS-CommunityEdition/blob/master/ecs-multi-node/pupppet/ecs3datanodes/manifest/ini.pp -O ini.pp

	Then download ecs manifest configure.pp wget -q https://github.com/EMCECS/ECS-CommunityEdition/blob/master/ecs-multi-node/pupppet/ecs3datanodes/manifest/configure.pp -O configure.pp

	Add custom Fact to check if ECS breadcrumb file exists on the node machines.
	Run cd /etc/puppetlabs/puppet/environments/production/modules/ecs3datanodes

	Run mkdir facts.d; cd facts.d

	Then download ecs fact checkecsfile.sh wget -q https://github.com/EMCECS/ECS-CommunityEdition/blob/master/ecs-multi-node/pupppet/ecs3datanodes/facts.d/checkecsfile.sh -O checkecsfile.sh

	Run puppet agent -t

Puppet Enterprise Web:

	From the console, click Classification in the top navigation bar.

	In the** Node group name** field, name your group ECS-DataNodes.

	Click Add group.

Note: Leave the Parent name and Environment values as their defaults (default and production, respectively).

	From the Classification page, select the ECS-DataNodes group, and click the Rules tab.

	In the Fact field, enter “name” (without the quotes).

	From the Operator drop-down list, select matches regex.

	In the Value field, enter “.x” (without the quotes).

	Click Add rule.

To add the ecs3datanodes classes to the ECS-DataNodes group:

	From the Classification page, select the ECS-DataNodes group.

	Click the Classes tab.

	In the Class name field, begin typing ecs3datanodes, and select it from the autocomplete list.

	Click Add class.

	Click the Commit change button.

	From the CLI of your Puppet master, run puppet agent -t.

Node Configuration

The following section needs to be performed on each one of the ECS Nodes:

	From command line run agent, run puppet agent -t.

	After finishing check docker container run docker ps

The execution of this script is will take about 1-5 minutes depending of how many packages need to be updated. This script executed should be executed on each ECS Node.

ECS Object Configuration

The next step, is the ECS Object configuration. This can be accomplished in two ways:

	ECS’ Administration UI: Please follow these Instructions. [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-UI-Web-Interface.md]

or

	Automated script: Please follow these Instructions. [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-MultiNode-Instructions.md#ecs-object-configuration]

ECS Web Environment access and object testing

After the successful execution of the ECS Object Configuration, the system is ready to start serving objects.

In addition, access to the ECS’s admin panel is available via the HTTPS. Using our previous example for ECS deployed on 10.0.0.4. Access should be enabled for https://IP-Address-of-ECS-Node. Default login and password: root/ChangeMe

Troubleshooting

If you have any issues with the installation you can review this page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md] for troubleshooting tips and/or go to the support section bellow.

Support

Please file bugs and issues at the GitHub issues page. For more general discussions you can contact the EMC Code team at Google Groups or tagged with EMC on Stack Overflow. The code and documentation are released with no warranties or SLAs and are intended to be supported through a community driven process.

ECS UI - Script Driven Object Provisioning -:

step2_object_provisioning.py –ECSNodes=Coma seperated list of datanodes –Namespace=namespace –ObjectVArray=Object vArray Name –ObjectVPool=Object VPool name –UserName=user name to be created –DataStoreName=Name of the datastore to be created –VDCName=Name of the VDC –MethodName=Operation to be performed

Run the script with below values 1 step at a time for –MethodName parameter . The parameters are mentioned below in the sequence in which they should be invoked.

	UploadLicense

	CreateObjectVarray

	CreateDataStore

	InsertVDC

	CreateObjectVpool

	CreateNamespace

	CreateUser - CreateUser method will return an exception that user already exists. Ignore the exception and proceed to create secret key for the user. Looks like the user is being created in spite of the exception.

	CreateSecretKey

Note: If -MethodName option is not provided all the Object Provisioning steps will be run in the same sequence as above automatically.

Note: The script may throw error when run using the old version of Python 2.6.8. Python 2.7.8 works fine for the script

Executing the Script using individual steps

Using the example Hosts and information provided on the documentation:

Hostname	IP Address	Disk Name		———	————	———-
ecstestnode1	10.0.1.10	sdc sdd		ecstestnode2	10.0.1.11	sdc sdd
ecstestnode3	10.0.1.12	sdc sdd				
ecstestnode4	10.0.1.13	sdc sdd				

These are example values for the parameters:

Variable Name	Variable Description	Example Value
————-	———————	————–
ECSNodes	IP Addresses of the ECS Nodes (coma delimited list).	10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13
NameSpace	The objects’ Namespace	ns1
ObjectVArray	The objects’ Virtual Array	ova1
ObjectVPool	The objects’ Virtual Pool	ov1
DataStoreName	The name of the Data Store.	ds1
VDCName	The name of the Virtual Data Center.	vdc1
MethodName	The name of step to be executed. Leave blank for automated and add a value for a manual installation	[empty]

Step 1: Upload the License File

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=UploadLicense

Step 2: Create Object Virtual Array

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=CreateObjectVarray

Step 3: Create the Data Store

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=CreateDataStore

Step 4: Insert VDC

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=InsertVDC

Step 5: Create Object Virtual Pool

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=CreateObjectVpool

Step 6: Create the Namespace

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=CreateNamespace

Step 7: Create a User

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=CreateUser

Step 8: Create the SecretKey

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=CreateSecretKey

ECS Software - Multi-Node Docker Configuration Instructions

Table of Contents

	Introduction

	Global Requirements

	Versioning

	Installation Steps

	CentOS Installation

	Pre-Installation Steps

	Host Configuration

	Host and Container Configuration

	ECS Object Configuration

	ECS Web Environment access and object testing

	Troubleshooting

	Files Inventory

	[Troubleshooting] (#troubleshooting)

	Support

Introduction

EMC’s Elastic Cloud Storage (ECS) Software Docker multiple node deployment is intended to be used by developers and has multiple deployment options for them. The most universal method for deploying ECS software is through Docker applied across whichever means are at your disposal (IaaS/PaaS/Hypervisor). In addition to this, you can leverage Vagrant for local VirtualBox instances.

In terms of cloud deployments, there are a range of options. The most compatible methods of deployment across any provider are the CentOS and CoreOS options to run the Docker instances.

Global Requirements

An ECS cluster deployment requires a minimum of four data nodes to provide the full set of features. Each one of the instances should have the following minimum requirements:

	Operative system: CentOS 7

	CPU/Cores: 3 Cores

	Memory: Minimum of 16 GB RAM

	Disks: An unpartitioned/raw disk with at least 100 GB of storage per disk. Multiple disks can be attached on each ECS node to increase capacity and performance. Each disk need to be unpartitioned before running the installation scripts.

Installation also requires internet connectivity to receive the requisite utility packages and Docker images.

Supported Host Operative Systems

We have performed testing against the following platforms:

OS Name | Version | Docker Version |
|——-|———|—————-|
|CentOS | 7.1 | 1.8.2 (latest) |

Installation Steps

The installation script is composed by two main steps:

Step	Name	Description	Execution Time
——	——	———–	—————
1	Host Configuration	This step controls the flow and contains the configuration changes required for the host OS that will run the ECS Software Docker container.	3-15 min
2	ECS Object Configuration	This step performs the ECS configuration so it can start serving objects.	10-30 min

CentOS Installation

CentOS [http://www.centos.org/] is a well-known Linux distribution with the ability to deploy containers with Docker. Common public cloud platforms have CentOS templates ready to be used, so getting ECS Software on a Docker container up is extremely easy.

Pre Installation Steps

These steps are to be performed prior running the installation scripts on each of the ECS Nodes:

	Attach Data Disk(s): ECS requires one or more disks to be attached to each host. The disk(s) will hold the object data store. The Disks will be formatted as XFS by the installation script.

The data disk(s) attached to each host need to be unpartitioned or RAW. For example: We have a new host where we execute the command sudo fdisk -l:

[image: Fdisk in a new Host]

In the picture, we can see two disks: sda and sdb. A mount -l looks like this:

[image: Mount in a new Host]

Now we attach a new disk to the host VM. The new disk /dev/sdc looks like this after executing fdisk -l again:

[image: Fdisk in New Host with a new disk attached]

Note: Depending on the environment or the cloud provider you maybe using, the attached disk name(s) will be different. In this example, the attached disk came as /dev/sdc. The attached disk will be formatted and mounted during step 1, so do not mount the ECS data disk before executing step 1:

[image: Fdisk after the STEP 1 script has executed]

	Open Ports: ECS requires the following ports to be open:

In addition, please refer to the ECS Security Configuration Guide [https://community.emc.com/docs/DOC-45012] and our the troubleshooting page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md] if you find any issues.

Port Number	Port Description
———–	—————-
22	SSH, needed if using remote access
443	Port used for accessing the ECS management website
3218	Port used by the CAS service
4443	ECS management API port
9020	Port used for the S3 API
9021	Port used for the S3 API on HTTPS
9022	Port used for Atmos API
9023	Port used for Atmos API on HTTPS
9024	Port used for SWIFT API
9025	Port used for SWIFT API on HTTPS
9100	Port used for DT Query service
9101	ECS Diagnostic Service Index

Note: There are the most commonly-used ports by ECS; please refer to List of Ports to be Open [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md#list-of-open-ports-required-on-each-ecs-data-node] of the troubleshooting page. In addition, please refer to the ECS Security Configuration Guide [https://community.emc.com/docs/DOC-45012] and our the troubleshooting page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md] if you find any issues.

	Network configuration: Define your network configuration. ECS Data Nodes must be on the same subnet and be able to talk to each other. This is an example:

[image: ECS Multinode network configuration example]

Host Configuration

:bangbang: WARNING: This is a destructive operation. Existing data on selected storage devices will be overwritten. Existing Docker installations AND images will be removed.

The following section needs to be performed on each one of the ECS nodes:

	Perform Updates: Perform a Yum update using sudo yum update and download packages required for installation using sudo yum install git tar wget

	Git Clone/Pull the repository: https://github.com/EMCECS/ECS-CommunityEdition

	Navigate to the /ecs-multi-node folder.

	Gather the IP addresses, desired hostnames, ethernet adapter name (which can be obtained by executing ifconfig on the host), and designated data disk(s). For example:

Hostname	IP Address	Disk Name	Ethernet Adapter
———	————	———-	——————
ecstestnode1	10.0.1.10	sdc sdd	eth0
ecstestnode2	10.0.1.11	sdc sdd	eth0
ecstestnode3	10.0.1.12	sdc sdd	eth0
ecstestnode4	10.0.1.13	sdc sdd	eth0

	Use gathered values for each ECS node (IP addresses, hostnames, ethernet adapter name, disk names) to build the step1_ecs_multinode_install.py script, which will be the same across all nodes. Be advised that the hostname can not be localhost for any node. For our example values, the command should look like this:

sudo python step1_ecs_multinode_install.py --ips 10.0.1.10 10.0.1.11 10.0.1.12 10.0.1.13 --hostnames ecstestnode1 ecstestnode2 ecstestnode3 ecstestnode4 --disks sdc sdd --ethadapter eth0

The execution of this script is will take about 3-15 minutes depending on how many packages need to be installed or updated and the speed of certain services on the host.
For a list of all arguments with their full descriptions and including more detailed options, use the --help flag, e.g. python step1_ecs_singlenode_install.py --help

	Once this step has finished, you may have to wait a few minutes until the administrative web UI becomes available. ECS’ administrative portal can be accessed from the data node on port 443 (https://<ecs-node-ip-address>). Once you see the screen bellow, you are ready to execute step 2.

[image: ECS UI]

ECS Object Configuration

The next step, is the ECS Object configuration. This can be accomplished in two ways:

	ECS’ Administration UI: Please follow these Instructions. [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-UI-Web-Interface.md]

	Automated script: Follow the instructions in the section below.

Both methods provide the same results; the first walks you through ECS’s administrative web interface and the second uses ECS’s Management API (exposed on port 4443 and 9011)

ECS Object Configuration via an automated script

	Navigate to the /ecs-multi-node folder

	Verify that the step2_object_provisioning.py script for the environment that you are in can access the 4443 and 9011 ports of the host machine, such as through the output of nmap -sT -O localhost

	Before executing the step2_object_provisioning.py please, please provide values for the following variables:

Variable Name	Variable Description	Example Value
————-	———————	————–
ECSNodes	IP Addresses of the ECS Nodes (comma-delimited list).	10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13
NameSpace	The objects’ Namespace	ns1
ObjectVArray	The objects’ Virtual Array	ova1
ObjectVPool	The objects’ Virtual Pool	ov1
UserName	The name of the initial Object User	user1
DataStoreName	The name of the Data Store.	ds1
VDCName	The name of the Virtual Data Center.	vdc1
MethodName	The name of step to be executed. Leave blank to complete all provisioning steps.	[empty]

Once the variables are defined, they should be placed in the script. Using the example values, the command becomes:

sudo python step2_object_provisioning.py --ECSNodes=10.0.1.10,10.0.1.11,10.0.1.12,10.0.1.13 --Namespace=ns1 --ObjectVArray=ova1 --ObjectVPool=ovp1 --UserName=emccode --DataStoreName=ds1 --VDCName=vdc1 --MethodName=

For more granular way of executing the Object Configuration, you can follow the instructions on this document [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-UI-Automation.md] showing how to run the process step by step.

The execution of this script may take 10 to 30 minutes to complete.

ECS Web Environment Access and Object Testing

After the successful execution of the ECS Object Configuration, the system is ready to begin serving objects. Object users can read and write using free tools like S3 browser [http://s3browser.com/]

In addition, access to the ECS’s administrative panel is available via the https://<ecs-node-ip-address> on any node. The default login and password for the portal is root/ChangeMe (which you will be prompted to change when first accessing the portal)

Troubleshooting

If you have any issues with the installation you can review this page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md] for troubleshooting tips and/or go to the support section bellow.

Support

Please file bugs and issues at the GitHub issues page. For more general discussions you can contact the EMC Code team at Google Groups or tagged with EMC on Stack Overflow. The code and documentation are released with no warranties or SLAs and are intended to be supported through a community-driven process.

ECS SW 2.x Single Node Vagrant Deployment

Table of Contents

	Introduction

	Requirements

	Using Vagrant

	Troubleshooting

	Support

Introduction

EMC’s Elastic Cloud Storage (ECS) 2.x Software Docker single node deployment is intended to be used by developers and has a range of deployment options for them. The most universal methods for deploying ECS software is through Docker applied across whichever means at your disposal (IaaS/PaaS/Hypervisor). In addition to this, you can leverage Vagrant for local VirtualBox instances.

Requirements

Remote machine:

	Operating system: CentOS 7

	CPU/Cores: 4 Cores

	Memory: Minimum of 50 GB RAM (64 GB recommended)

	Disks: An unpartitioned/Raw disk with at least 100 GB.

	rsync package

Local machine:

	Vagrant [http://www.vagrantup.com/]

	Vagrant ManagedServers plugin [https://github.com/tknerr/vagrant-managed-servers]

	rsync package

CentOS Installation

CentOS [http://www.centos.org/] is a well known Linux distribution that has the ability to deploy containers with Docker. Common public cloud platforms have CentOS templates ready to be used, so getting ECS 2.x Software on a Docker container up is extremely easy!

These are the installation steps to perform a CentOS installation:

Pre-installation steps

	Attach Disk to Host: ECS requires a disk to be attached to the host. This disk will hold the data (objects). For testing purposes you can attach a disk above 128 GB.

	Open Ports in Host: ECS requires the following ports open:

Port Number	Port Description
———–	—————-
22	SSH, needed if using remote access
443	Port used for accessing the ECS Web Application
4443	Port used for accessing the ECS API. This port can be closed from external access after the installation
9011	Port used for accessing the ECS API. This port can be closed from external access after the installation
9020	Port used for the S3 API
9024	Port used for SWIFT API

Note: There are more ports required to be open if you have a firewall running on the host. Please refer to List of Ports to be Open [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md#list-of-open-ports-required-on-each-ecs-data-node] of the troubleshooting page.

In addition, please refer to the ECS Security Configuration Guide [https://community.emc.com/docs/DOC-45012] and our the troubleshooting page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md] if you find any issues.

Remote host configuration

Login to the remote machine and perform a Yum update sudo yum update and download the required packages sudo yum install rsync

Edit the sudoers file to avoid the system from asking for the password when running sudo.

sudo vi /etc/sudoers

Look for the line that contains Defaults requiretty and comment it.

#Defaults requiretty

Now run

sudo visudo

And add the following lines at the end of the file.

username ALL=(ALL) NOPASSWD: ALL
username ALL=(ALL:ALL) NOPASSWD: ALL

Replace username by the user that is actually logging in via SSH.

Using Vagrant

We are going to use Vagrant to prepare a remote machine with SSH access. You will just need to configure the SSH credentials and Vagrant will take care of installing the ECS in the single node mode.

First, you will need to configure the connection details for Vagrant to be able to connect to the remote machine.

Open the vagrant file and edit the following lines:

ml_config.vm.provider :managed do |managed, override|
 managed.server = "your_host.com"
 override.ssh.username = "your_username"
 override.ssh.password = "your_password"
 override.ssh.port = 22
 #override.ssh.private_key_path = "/path/to/bobs_private_key"
end

If you want to use an SSH key just comment line about the password.

Now, let’s link it to the remote host by running the following command.

vagrant up

To check that we can connect to it, we can run

vagrant ssh

If everything goes right, you will access the remote host. You can now exit from there and run

vagrant provision

It will prepare the remote host and install ECS in single node mode. You will be able to see the output while Vagrant is configuring the host. When it finishes, the system is ready to start serving objects. In addition, access to the ECS’s admin panel is available via the HTTPS. Using our previous example for ECS deployed on 10.0.0.4. Access should be enabled for https://IP_OR_HOST. Default login and password: root / ChangeMe

Troubleshooting

If you have any issues with the installation you can review this page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting%20.md] for troubleshooting tips and/or go to the support section bellow.

Support

Please file bugs and issues at the GitHub issues page. For more general discussions you can contact the EMC Code team at Google Groups or tagged with EMC on Stack Overflow. The code and documentation are released with no warranties or SLAs and are intended to be supported through a community driven process.

ECS SW 2.x Google Compute Engine Deployment

ECS 2.x Multi Node installation on Google Compute Engine:

The following instructions will allow you to install ECS 2.x software using a GCE Deployment Manager, using a simple template file.

Prerequisite -

	Google Compute Engine Tools, you can download and install it from the following link: gcloud Tools Install [https://cloud.google.com/sdk/gcloud/]

	Google Compute Engine Template files that are located in this git repository under ECS-CommunityEdition/ecs-multi-node/gce/

Evnvironment Requirements

The following are the base requirements for running ECS 2.2 software for a mutli node install, this will be created as part of the gcloud commands below:

	Operative system: CentOS 7.1

	CPU/Cores: 4 Cores

	Memory: Minimum of 50 GB RAM (64 GB recommended)

	Disks: An un-partitioned/Raw disk with at least 100 GB of Storage per disk per host. Multiple disks can be attached on each ECS Node to increase capacity and performance. Each disk need to be un-partitioned before running the installation scripts.

Deploy ECS Multi Node Install

Using GCE Deployment Manager to deploy a multi node ECS. Please make sure to reference the right template from ECS-CommunityEdition/ecs-multi-node/gce/ecs_multinode.yaml

Deployment Manager is GCE’s deployment orchestration tool. It enables developers/ops to describe deployments using templates so it is easier to consume, manage and deploy. The following is a deployment template that basically does the following;

	Create required firewall rules for ECS

	Create a set of 4 data disk of 256 GB size each.

	Create a set of 4 VM Instance of type n1-highmem-2 (2core 13GB)

	Attach Disk for each node

	Assign Network

	Run a startup script for installing and provisioning ECS.

Note I am using here a preemtible GCE node type, this means it lasts only 24 hours. If you are looking to run this for sometime remove this option from the template.

gcloud deployment-manager deployments create ecs-deployment --config ./ecs-multi-node/gce/ecs_multinode.yaml

After the installation has completed wait 10 - 15 minutes, and then attempt to login into the ECS portal for any of the nodes.

Provisioning

The automated provisioning may get stuck, login into the portal and start the manual provisioning.

	Upload License

	Create Storage Pool

	Create Virtual Data Center

	Create Replication Group

	Create Namespace

	Create User and retrieve S3 Secret Key

	Create Bucket

For details follow these steps in the ECS Portal. [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-UI-Web-Interface.md]

Monitor Node Status

In order to monitor the installation process, you need to get a serial port dump from GCE, this can be done using the following command:

gcloud compute instances get-serial-port-output --zone us-central1-f ecs1

Access the ECS Web UI

The ECS Administrative portal can be accessed from any one of the ECS data nodes via HTTPS on port 443. For example: https://ecs-node-ip-address. Once you see the screen below:

[image: ECS UI]

Cleanup

Now once you are done, you can cleaup instance, disk and networks created (note the disk will be automatically deleted once the instance is deleted)

gcloud deployment-manager deployments delete ecs-deployment

ECS SW 2.x Google Compute Engine Deployment

ECS 2.x Single Node installation on Google Compute Engine:

The following instructions will allow you to install ECS 2.x software using a GCE Deployment Manager with a single command.

Prerequisite -

Google Compute Engine Tools, you can download and install it from the following link:

	gcloud Tools Install [https://cloud.google.com/sdk/gcloud/]

Google Compute Engine Template files that are located in this git repository under ECS-CommunityEdition/ecs-single-node/gce/

Evnvironment Requirements

The following are the base requirements for running ECS 2.x software for a single node install, this will be created as part of the gcloud commands below:

	Operative system: CentOS 7.1

	CPU/Cores: 4 Cores

	Memory: Minimum of 50 GB RAM (64 GB recommended)

	Disks: An un-partitioned/Raw disk with at least 100 GB of Storage per disk per host. Multiple disks can be attached on each ECS Node to increase capacity and performance. Each disk need to be un-partitioned before running the installation scripts.

Deploy ECS Single Node Install

Using GCE Deployment Manager to deploy a single node ECS. Please make sure to reference the right template from ECS-CommunityEdition/ecs-single-node/gce/ecs_singlenode.yaml

Deployment Manager is GCE’s deployment orchestration tool. It enables developers/ops to describe deployments using templates so it is easier to consume, manage and deploy. The following is a deployment template that basically does the following;

	Open required firewall ports for ECS

	Create a new data disk of 256 GB size.

	Create a new VM Instance of type n1-highmem-8 (8core 50GB)

	Attach Disk

	Assign Network

	Run a startup script for installing and provisioning ECS.

Note I am using here a preemtible GCE node type, this means it lasts only 24 hours. If you are looking to run this for sometime remove this option from the template.

gcloud deployment-manager deployments create ecs-deployment --config ./ecs_singlenode.yaml

After the installation has completed the script will attempt to login using curl, this may take from 10 - 15 minutes.

Provisioning

The automated provisioning may get stuck, login into the portal and start the manual provisioning. The license is already uploaded so you will need to just provision the following in order:

	Create Storage Pool

	Create Virtual Data Center

	Create Replication Group

	Create Namespace

	Create User and retrieve S3 Secret Key

	Create Bucket

For details follow these steps in the ECS Portal. [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-UI-Web-Interface.md]

Monitor Node Status

In order to monitor the installation process, you need to get a serial port dump from GCE, this can be done using the following command:

gcloud compute instances get-serial-port-output --zone us-central1-f ecs1

Access the ECS Web UI

The ECS Administrative portal can be accessed from any one of the ECS data nodes via HTTPS on port 443. For example: https://ecs-node-ip-address. Once you see the screen below:

[image: ECS UI]

Cleanup

Now once you are done, you can cleaup instance, disk and networks created (note the disk will be automatically deleted once the instance is deleted)

gcloud deployment-manager deployments delete ecs-deployment

ECS Software - Single-Node Docker Configuration Instructions

Table of Contents

	Introduction

	Global Requirements

	Installation Steps

	CentOS Installation

	Pre-Installation Steps

	Host Configuration

	Host and Container Configuration

	ECS Object Configuration

	ECS Web Environment access and object testing

	Troubleshooting

	Support

Introduction

EMC’s Elastic Cloud Storage (ECS) Software Docker single node deployment is intended to be used by developers and has a range of deployment options for them. The most universal method for deploying ECS software is through Docker applied across whatever means are at your disposal (IaaS/PaaS/Hypervisor). In addition to this, you can leverage Vagrant for local VirtualBox instances.

In terms of cloud deployments, there are a range of options. The most compatible methods of deployment across any provider EW the CentOS and CoreOS options to run the Docker instances.

Global Requirements

All instances currently require to have the following minimum requirements:

	Operating systems: CentOS 7

	CPU/Cores: 4 Cores

	Memory: Minimum of 16 GB RAM

	Disks: An unpartitioned/raw disk with at least 100 GB.

Installation also requires internet connectivity to recieve the requisite utility packages and Docker images.

Supported Host Operative Systems and Docker Version

We have performed testing against the following platform(s):

OS Name | Version | Docker Version |
|——-|———|—————-|
|CentOS | 7.1 | 1.8.2 (latest) |

Installation Steps

The installation script is comprised of three main steps:

Step	Name	Description	Execution Time
——	——	———–	—————
1	Host & ECS Container Configuration	This step controls the flow and contains the configuration changes required for the Host OS that will run the ECS Software Docker container. In addition, this step updates the ECS Docker container so it can run as a single node and with limited resources	3-15 min
2	ECS Object Configuration	This step performs the ECS configuration so it can start serving objects.	10-30 min

CentOS Installation

CentOS [http://www.centos.org/] is a well-known Linux distribution with the ability to deploy containers with Docker. Common public cloud platforms have CentOS templates ready to be used, so getting ECS Software on a Docker container up is extremely easy.

Pre Installation Steps

These steps are to be performed prior running the installation scripts on each of the ECS nodes:

	Attach Data Disk(s): ECS requires one or more disks to be attached to the host. The disk(s) will hold the object data store. The Disks will be formatted as XFS by the installation script.

The data disk(s) attached to each host must be unpartitioned or RAW. For example: We have a new host where we execute the command fdisk -l:

[image: Fdisk in a new Host]

In the picture, we can see two disks: sda and sdb. A mount -l looks like this:

[image: Mount in a new Host]

Now we attach a new disk to the host VM. The new disk /dev/sdc looks like this after executing fdisk -l again:

[image: Fdisk in New Host with a new disk attached]

Note: Depending on the environment or the cloud provider you maybe using, the attached disk name(s) will be different. In this example, the attached disk came as /dev/sdc. The attached disk will be formatted and mounted during step 1, so do not mount the ECS data disk before executing step 1:

[image: Fdisk after the STEP 1 script has executed]

	Open Ports: ECS requires the following ports to be open:

Port Number	Port Description
———–	—————-
22	SSH, needed if using remote access
443	Port used for accessing the ECS management website
3218	Port used by the CAS service
4443	ECS management API port
9020	Port used for the S3 API
9021	Port used for the S3 API on HTTPS
9022	Port used for Atmos API
9023	Port used for Atmos API on HTTPS
9024	Port used for SWIFT API
9025	Port used for SWIFT API on HTTPS
9100	Port used for DT Query service
9101	ECS Diagnostic Service Index

Note: There are the most commonly-used ports by ECS; please refer to List of Ports to be Open [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md#list-of-open-ports-required-on-each-ecs-data-node] of the troubleshooting page. In addition, please refer to the ECS Security Configuration Guide [https://community.emc.com/docs/DOC-45012] and our the troubleshooting page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md] if you find any issues.

Host and Container Configuration

:bangbang: WARNING: This is a destructive operation. Existing data on selected storage devices will be overwritten. Existing Docker installations AND images will be removed.

	Perform Updates: Perform a Yum update using sudo yum update and download packages required for installation using sudo yum install git tar wget

	Git Clone/Pull the repository: https://github.com/EMCECS/ECS-CommunityEdition

	Navigate to the /ecs-single-node folder.

	Gather the IP Address, desired hostname, ethernet adapter name (which can be obtained by executing ifconfig on the host) and designated data disk(s). For example:

|Hostname | IP Address | Disk Name|Ethernet Adapter||———|————|———-|—————-|
|ecstestnode1 | 10.0.1.10 |sdc |eth0|

	Run the step 1 script for single-node ECS. For our example values the command would be the one below, but your environment’s specifics will differ. Be advised that the hostname can not be localhost. The execution of this script will take about 3-15 minutes depending on how many packages need to be installed or updated and the speed of certain services on the host:
sudo python step1_ecs_singlenode_install.py --disks sdc --ethadapter eth0 --hostname ecssinglenode
For a list of all arguments with their full descriptions and including more detailed options, use the --help flag, e.g. python step1_ecs_singlenode_install.py --help

	At the conclusion of step 1, you may have to wait a few minutes until the administrative web UI becomes available. ECS’ administrative portal can be accessed from the data node on port 443 (https://<ecs-node-ip-address>). Once you see the screen bellow, you are ready to execute step 2.

[image: ECS UI]

ECS Object Configuration

The next step is the ECS Object configuration. This can be accomplished in two ways:

	ECS’ Administration UI: Please follow these Instructions. [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-UI-Web-Interface.md]

	Automated script: Follow the instructions in the section below.

Both methods provide the same results; the first walks you through ECS’s administrative web interface and the second uses ECS’s Management API (exposed on port 4443 and 9011)

ECS Object Configuration via an automated script

	Navigate to the /ecs-single-node folder

	Verify that the step2_object_provisioning.py script for the environment that you are in can access the 4443 and 9011 ports of the host machine, such as through the output of nmap -sT -O localhost
. Before executing the step2_object_provisioning.py, decide upon values for the following variables:

Variable Name	Variable Description	Example Value
————-	———————	————–
ECSNodes	IP Address of the ECS Node. For Single-Node deployment, only one IP is necessary.	10.0.1.10
NameSpace	The objects’ Namespace	ns1
ObjectVArray	The objects’ Virtual Array	ova1
ObjectVPool	The objects’ Virtual Pool	ov1
UserName	The name of the initial Object User	user1
DataStoreName	The name of the Data Store.	ds1
VDCName	The name of the Virtual Data Center.	vdc1
MethodName	The name of step to be executed. Leave blank to complete all provisioning steps.	[empty]

Once the variables are defined, they should be placed in the script command. Using the example values, the command becomes:

sudo python step2_object_provisioning.py –ECSNodes=10.0.1.10 –Namespace=ns1 –ObjectVArray=ova1 –ObjectVPool=ovp1 –UserName=emccode –DataStoreName=ds1 –VDCName=vdc1 –MethodName=

For more granular way of executing the Object Configuration, you can follow the instructions on this document [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-UI-Automation.md] showing how to run the process step by step.

The execution of this script may take 10 to 30 minutes to complete.

ECS Web Environment Access and Object Testing

After the successful execution of the ECS Object Configuration, the system is ready to begin serving objects. Object users can read and write using free tools like S3 browser [http://s3browser.com/]

In addition, access to the ECS’s administrative panel is available via the https://<ecs-node-ip-address>. The default login and password for the portal is root/ChangeMe (which you will be prompted to change when first accessing the portal)

Troubleshooting

If you have any issues with the installation, you can review this page [https://github.com/EMCECS/ECS-CommunityEdition/blob/master/Documentation/ECS-Troubleshooting.md#ecs-software-20—troubleshooting-tips] for troubleshooting tips and/or go to the support section bellow.

Support

Please file bugs and issues at the GitHub issues page. For more general discussions you can contact the EMC Code team at Google Groups or tagged with EMC on Stack Overflow. The code and documentation are released with no warranties or SLAs and are intended to be supported through a community-driven process.

ECS Administrative Web UI

Login to the Web UI

The WebUI uses SSL and a self-signed certificate to help protect your session from casual eves-dropping. Take the IP of your first ECS node, fire up your browser, and point https:// at it. For this example, the latest Google Chrome browser was used.

You cannot add, change, or remove administrative users in this build. Use the default below.

Username: root
Password: ChangeMe

Input License

Open Settings, then Licensing and upload the license.xml file located in the ecs-single-node / ecs-multi-node folder. The UI will not automatically update the license view in this release. Navigating away from page and returning will prompt it to update. You may need to try a few times before it updates. Once it does, you should see something like this:

[image: Upload License file]

Create Storage vPool

Open Manage, then Storage Pools and create a storage pool. Keep the name simple, and add all nodes to the pool. Click Save.

There’s a known issue in this build that causes the Storage Pools view to appear frozen for about 1-2 minutes after provisioning begins. Unlike with the license view case, this view will update on its own. Once it’s updated, you should see something similar to:

[image: Create Storage VPool]

Create Virtual Data Center

Open Manage, then Virtual Data Center and create a Virtual Data Center using the below screenshot as a guide. Please wait for up to 20 minutes after creating a Storage vPool before creating a Virtual Data Center. There are several background tasks that must complete, and for object to fully initialize.

[image: Create Virtual Data Center]

Create Replication Group

Open Manage, then Replication Group and create a Replication Group using the below as an example. Currently only one VDC in a replication group is supported.

[image: Create Replication Group]

Create Namespace

Open Manage, then Namespace. Set up a Simple Namespace with a name such as “ns”. Input a namespace username to use with the namespace, such as “ecs_user”. Select the replication group for the namespace, and click Save at the very bottom.

Namespace features available in this release

	:white_check_mark: Simple Namespace

	:x: ~~Retention Policies~~

	:x: ~~Quotas~~

	:x: ~~Authentication Domains~~

[image: Create Namespace]

Create Object User Account

Open Manage, then Users, then click on Object Users and New Object User to set up object store credentials.

[image: Create Namespace]

Create secrets by filling the fields and clicking the buttons.

	S3 Key: Click Generate & Add Password to retrieve the server-generated key.

	Swift Password: Enter your own password and click Set Password.

[image: Create User S3 and Swift Keys]

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

